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I. Phys. A: Math. Gen. 19 (1986) L185-Ll90. Rinted in Great Britain 

LETTER TO THE EDITOR 

On the Lie-Backlund vector fields for the coupled non-linear 
Klein-Gordon system 

Shibani Sen and A Roy Chowdhury 
High Energy Physics Division, Department of Physics, Jadavpur University, Calcutta- 
700 032, India 

Received 10 October 1985, in final form 2 December 1985 

Abstract. We have analysed the types of non-linear coupled Klein-Gordon equations 
possessing non-trivial Lie-Backlund vector fields. The Dodd-Bullough equation occurs 
as a special case of our system. These systems have the special feature of Laving the lowest 
symmetry generator depending upon the fifth derivative of the fields. 

Recently there have been various approaches for the study of completely integrable 
systems. One of the most effective and elegant methods is that of Lie-Backlund vector 
fields [l]. In this respect the case of coupled diffusion equations has been considered 
by Steeb [2]. Some important properties of non-trivial Lie-Backlund (LB) vector fields 
make it necessary to extend this analysis to other kinds of equations, which do not 
possess the lowest-order symmetries (those depending on Ul and U3). The first and 
foremost example of such an equation is the Dodd-Bullough [3] equation which does 
not possess any LB vector field starting with Uk with k < 5 .  So although there is a 
mention of this equation in the paper by Steeb, the proper equation satisfied by the 
corresponding non-linear function occurring on the right-hand side of the Klein- 
Gordon equation was not deduced. 

Here we begin with a more generalised setting by considering a pair of coupled 
non-linear Klein-Gordon (CNKG) equations for two fields U and 6: 

In the usual jet bundle approach we use the notation U, = u l ,  U, = u2, aXx = 
and consider the submanifold given as 

etc, 

and all other differential consequences of (2). That is, if we write 

F = u l f - f ( u ,  6 ) = 0  

G= 61, -g(u,  6 ) = 0  
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where we have tacitly assumed that the vector field does not depend on (U, 8) or on 
(x, t ) .  It is usually observed that if at least one such LB vector field is admitted then 
a hierarchy exists. Furthermore, for application of (4) to equations (1) we require an 
extension of (4) involving U, and 6,. At this point it is not out of place to introduce 
the assumption that the functions h and k depend linearly on us and as. So we can write 

where D, is the operator defined by 

a a a 
a t  a ui a 6, D, = - + C uiI-+ C eiI-. 

Then the invariance requirement of (1) is expressed as 

%F-O 2eG 0 (7) 
where 2* denotes the Lie derivative with respect to the vector field V and 2: denotes 
the restriction to the solution manifold of (1). Finally 

h = u1u5+ a265+ h 

k = blu,+ b265+ k 

where ai, bi are arbitrary constants. Equipped with these we now write out (7) in full, 
which reads 
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where A is the following operator: 

Equating coefficients of us and a5, it is seen that h and k are independent of u4 and 
if the following conditions are satisfied: 

a2 = b, = 0 a, = b2. 

Separating again the coefficients of u4 and a4, we observe 

= u 3 5 1  + 8 3 6 2  

k = u3e1+ 4 3 8 2  

~ 5 r + ~ a l ~ , f u , + ~ a , Q l f u e = O  

A&+ 5a161fso +5a,u1fue = 0 

with &, f 2  satisfying 

A ~ 1 + 5 a l u l g u , + 5 a 1 6 1 g , ~  = O  

A62+5a14,g,,+5a,u,g,, = O  

where the operator A reduces to 

Solving these sets of equations we obtain that ti, Bi ( i  = 1,2) possess the quadratic 
structure 

5, = auz+ pa2+ a lu :+  u2I9:+ u 3 U 1  6, 

5 2  = a1u2+P‘tY2+ cr;u:+ a:6:+uju16, 

el = yu2 + sa2 + plu: + p 2 6 :  + p3u1 6, 

e2 = Y I U ~ +  s’a2+ P ; u : +  ~ $ 6 :  + &6,. 

afu + Pg, + 2u1f+ 5alfu, = 0 

f f f e  + Pgs + 2u2g + Sad”* = 0 

(15) 

Simultaneously it is necessary that the functions f and g satisfy 

(16) 

and similar equations from other sets. The consistency of these yield 

U l P ‘ - - 4 P  = PlY’ -P;Y  

u 2 P ’ - d P  = P 2 Y ’ -  P h .  

So for coupled Klein-Gordon-like non-linear systems, when the functions f and g 
satisfy equations of the form (16), the symmetry generators have the form 

7, = alu5+ u ~ [ L Y u ~ + ~ ~ ~ + ( T ~ u : + u ~ ~ ~ : ]  
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Substituting these forms of 7, and 7, and equating the coefficients of u3, a3, the 
equations for q and p are obtained; in the form 

A -ap = a polynomial linear in ( U,, 9,) and quadratic in (ul, 6,) (19a) 
au2 

A * = a polynomial of the same structure as above. (196) a 8 2  

We have not written the explicit structure of the right-hand sides of equations (19a) 
and (19b) as they are too elaborate and cumbersome, but the structure noted is good 
enough to suggest the form for p and q. 

Actually we have set 

4 =  u:q,(u,, 61)+a:q,(u,, 6 1 ) f q ' ( u , ,  6,) 

p = u:Pl(Ul, a,)+ 6:p,(u,, ~ 1 ) + p ' ( u 1 ,  4,) 

which leads to 

841 
a u ,  a6, 

2 f 3  + 2g- + 2U,f+ 2 afu + 1 Oa, Lu - yfs + ( p f 2 a ') gu = 0 

2 4 f +  PfU + loa,  fua + (a - y')fa + 2P'gu + a'gs = 0 

2 U , g + ~ ' g u + 1 0 a , f u ~ + ( 2 a  -S)fa+(P+a ' )ga = o  

and also 

2f* au, + 2g* a 6 ,  + 2pBg + 26' ga + 10b2gaa - P 'g,, + (26 + y')fa = 0. (22d) 

It is interesting to observe that in the set of equations (21) there are two equations for 
the functions ( q,, q2)  occurring in the structure of the symmetries and two other coupled 
equations for the functions (f, g)  giving the form of the non-linear equations. Similarly 
( pl, p , )  are determined by equations (22a) and (22d), the other two equations of the 
set (22) again giving information for f and g. Now these equations suggest that 

41 =&(U, B,(u ,  6)% 

4 2 = 4 ( u ,  6 ) u , + % ( u ,  6).91 

PI = M u ,  fi)u,+B,(u, 6).91 
(23) 

~2=A; (u ,  6 ) ~ , + B ; ( ~ , 6 ) 6 1 .  

A possible simplified solution is given as B1 = B, = 0, A ,  = U,,  A6 = 0, etc. Finally, 
equating coefficients of U,, and their various powers we obtain equations for p' and 
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q' written as 

-- - a polynomial of degree 3 in U,, 6,. a2q' 
au: 

Similarly for p, and variations of q' and p' with respect to 8,. So in general 
5 

q'= EiU:-i6gl 

i = O  

so that the explicit structure of the symmetry generators is 

7, = a ,  U5 + u3( au2 + w2 + a1 U: + a2&) + v3(  a 'U2 + p'& + U: U: + a; 6:) 
5 + u ~ [ a , u , + p 1 6 , ] +  u:[A2u,+ B 2 6 , ] +  2 ~ ~ ~ : - ~ 6 i  

i = O  

with a similar form for 7*. At the same time we observe that the forms of the non-linear 
equations are determined by equations (21b), ( ~ I c ) ,  (226) and (22c). By suitable 
adjustments of the arbitrary constants involved one can easily visualise that the solution 
admitted by these can be put in the form 

g =e-" sinh 3 6  

f = e2" -e -"  cosh 36. 

It is now interesting to observe that for 6 = 0, g = 0 and f = e2" - e-"; so that the system 
reduces to the case of a Dodd-Bullough equation. In general, a system of the form 
(26) can be termed as a generalised Toda lattice equation and none of these possess 
any symmetry (non-trivial, other than space translation) with terms lower than u5. 
Another solution for the system (21b), (21c) and (226), (22c) is seen to be 

f = e" -e-'' cos 6 

g = e-" sin 6 

which is the equation of the relativistic string. In the following we give a short discussion 
of the special case 6 = 0 for (27) to give some idea of the explicit computations involved. 

In this case we have 

D,D,v = 72f, = ui+,A( "> + ui+, t- a7 
8 U i  a ui 

with 

7 = U , & +  h(u4, .  . . , UJ. 
Equation (28) yields A(dh/au4) = 0 implying independence of h on u4. From the 
coefficient of u4 

If we set 
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leading to 

with the choice 

g = au2+ pu: 

we get 

5aJu. + af, + 2 p f  = 0. 

A solution for f is 

f = A,  err,' + h2 eU2" 

with u1u2 being the roots of the equation 

5 a , u 2 + a u + 2 p  =o. 
For U,= - 2 u ,  we get the Dodd-Bullough equation and this leads to a'= -Sa,@, 
connecting the constants a and p .  Such adjustment of constants can also be performed 
in the case of the coupled equations ( 2 6 )  and ( 2 7 )  for the reduction of the general 
equation to a specific case. In this particular case the form of the symmetry generator 
is found to be 

r] = a,ug + ( au2+ pu:)u3  + uu:u,  + au:. 

In our discussions above we have used the machinery of Lie-Backlund vector fields 
to analyse a class of coupled Klein-Gordon equations, possessing no trivial generators 
starting with us. The relativistic string equation, generalised Toda lattice and Dodd- 
Bullough equation are well known members of this class. In each case the form of 
the symmetry generators are explicitly determined except for arbitrary constants. At 
this point we can mention that equations ( 2 6 )  and ( 2 7 )  were first considered by Fordy 
and Gibbons [4]. 

One of the authors (SS) is grateful to the Government of India (DST) for support 
through a Thrust Area Project. 
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