On the Lie-Backlund vector fields for the coupled non-linear Klein-Gordon system

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1986 J. Phys. A: Math. Gen. 19 L185
(http://iopscience.iop.org/0305-4470/19/4/003)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 19:27

Please note that terms and conditions apply.

LETTER TO THE EDITOR

On the Lie-Backlund vector fields for the coupled non-linear Klein-Gordon system

Shibani Sen and A Roy Chowdhury
High Energy Physics Division, Deparment of Physics, Jadavpur University, Calcutta700032 , India

Received 10 October 1985, in final form 2 December 1985

Abstract

We have analysed the types of non-linear coupled Klein-Gordon equations possessing non-trivial Lie-Backlund vector fields. The Dodd-Bullough equation occurs as a special case of our system. These systems have the special feature of Laving the lowest symmetry generator depending upon the fifth derivative of the fields.

Recently there have been various approaches for the study of completely integrable systems. One of the most effective and elegant methods is that of Lie-Backlund vector fields [1]. In this respect the case of coupled diffusion equations has been considered by Steeb [2]. Some important properties of non-trivial Lie-Backlund (Lb) vector fields make it necessary to extend this analysis to other kinds of equations, which do not possess the lowest-order symmetries (those depending on U_{1} and U_{3}). The first and foremost example of such an equation is the Dodd-Bullough [3] equation which does not possess any lb vector field starting with U_{k} with $k<5$. So although there is a mention of this equation in the paper by Steeb, the proper equation satisfied by the corresponding non-linear function occurring on the right-hand side of the KleinGordon equation was not deduced.

Here we begin with a more generalised setting by considering a pair of coupled non-linear Klein-Gordon (CNKG) equations for two fields u and ϑ :

$$
\begin{align*}
& u_{x t}=f(u, \vartheta) \\
& \vartheta_{x t}=g(u, \vartheta) . \tag{1}
\end{align*}
$$

In the usual jet bundle approach we use the notation $u_{x}=u_{1}, u_{x x}=u_{2}, \vartheta_{x x}=\vartheta_{2}$, etc, and consider the submanifold given as

$$
\begin{align*}
& u_{1 t}=f(u, \vartheta) \\
& \vartheta_{1 t}=g(u, \vartheta) \tag{2}
\end{align*}
$$

and all other differential consequences of (2). That is, if we write

$$
\begin{aligned}
& F \cong u_{1 t}-f(u, \vartheta)=0 \\
& G \equiv \vartheta_{1 t}-g(u, \vartheta)=0
\end{aligned}
$$

then

$$
\begin{aligned}
& F_{1} \equiv u_{2 t}-f_{u} u_{1}-f_{\vartheta} \vartheta_{1} \\
& F_{2} \equiv u_{3 t}-f_{u} u_{2}-u_{1}^{2} f_{u u}-2 u_{1} \vartheta_{1} f_{u \vartheta}-\vartheta_{\vartheta} f_{\vartheta}-\vartheta_{1}^{2} f_{\vartheta \vartheta} \\
& F_{3} \equiv u_{41}-f_{u} u_{3}-3 u_{1} u_{2} f_{u u}-u_{1}^{3} f_{u u u}-\ldots
\end{aligned}
$$

and

$$
\begin{align*}
& G_{1} \equiv \vartheta_{2 t}-g_{u} u_{1}-g_{\vartheta} \vartheta_{1} \\
& G_{2} \equiv \vartheta_{3 t}-g_{u} u_{2}-u_{1}^{2} g_{u u}-2 u_{1} \vartheta_{1} g_{u \vartheta}-\vartheta_{2} g_{\vartheta}-\vartheta_{1}^{2} g_{\vartheta \vartheta} \tag{3}\\
& G_{3} \equiv \vartheta_{4 t}-u_{3} g_{u}-\vartheta_{3} g_{\vartheta}-3 u_{1} u_{2} g_{u u}-3 \vartheta_{1} \vartheta_{2} g_{\vartheta \vartheta}-u_{1}^{3} g_{u u u}-\vartheta_{1}^{3} g_{\vartheta \vartheta \vartheta} \\
& \quad \quad \quad+3\left[u_{1} \vartheta_{2}+u_{2} \vartheta_{1}\right] g_{u \vartheta}+3 u_{1} \vartheta_{1} g_{u u \vartheta}+3 u_{1} \vartheta_{1}^{2} g_{u \vartheta \vartheta} .
\end{align*}
$$

For this coupled system of Klein-Gordon equations we assume that the lowest lb vector field starts with u_{5} and all u_{i} with $i<5$ so that

$$
\begin{equation*}
V=h\left(u_{1} \ldots u_{5}, \vartheta_{1} \ldots \vartheta_{5}\right) \frac{\partial}{\partial u}+k\left(u_{1} \ldots u_{5}, \vartheta_{1} \ldots \vartheta_{5}\right) \frac{\partial}{\partial \vartheta} \tag{4}
\end{equation*}
$$

where we have tacitly assumed that the vector field does not depend on (u, ϑ) or on (x, t). It is usually observed that if at least one such lb vector field is admitted then a hierarchy exists. Furthermore, for application of (4) to equations (1) we require an extension of (4) involving u_{t} and ϑ_{t}. At this point it is not out of place to introduce the assumption that the functions h and k depend linearly on u_{5} and ϑ_{5}. So we can write

$$
\begin{equation*}
\dot{V}=h\binom{u_{1} \ldots u_{5}}{\vartheta_{1} \ldots \vartheta_{5}} \frac{\partial}{\partial u}+k\binom{u_{1} \ldots u_{5}}{\vartheta_{1} \ldots \vartheta_{s}} \frac{\partial}{\partial \vartheta}+D_{i} h \frac{\partial}{\partial u_{t}}+D_{t} k \frac{\partial}{\partial \vartheta_{t}} \tag{5}
\end{equation*}
$$

where D_{t} is the operator defined by

$$
\begin{equation*}
D_{t}=\frac{\partial}{\partial t}+\sum u_{i t} \frac{\partial}{\partial u_{i}}+\sum \vartheta_{i i} \frac{\partial}{\partial \vartheta_{i}} . \tag{6}
\end{equation*}
$$

Then the invariance requirement of (1) is expressed as

$$
\begin{equation*}
\mathscr{L}_{\theta} F \simeq 0 \quad \mathscr{L}_{\theta} G \simeq 0 \tag{7}
\end{equation*}
$$

where \mathscr{L}_{ϑ} denotes the Lie derivative with respect to the vector field V and \simeq denotes the restriction to the solution manifold of (1). Finally

$$
\left.\begin{array}{l}
h=a_{1} u_{5}+a_{2} \vartheta_{5}+h\binom{u_{1} \ldots u_{4}}{\vartheta_{1} \ldots} \\
k=b_{1} u_{5}+b_{2} \vartheta_{5}+k\left(\begin{array}{l}
u_{1} \ldots \\
\vartheta_{1} \ldots
\end{array} u_{4}\right. \tag{8}\\
\vartheta_{1} \ldots
\end{array}\right)
$$

where a_{i}, b_{i} are arbitrary constants. Equipped with these we now write out (7) in full, which reads

$$
\begin{align*}
& \sum u_{i+1} \Lambda\left(\frac{\partial h}{\partial u_{i}}\right)+\sum \vartheta_{i+1} \Lambda\left(\frac{\partial h}{\partial \vartheta_{i}}\right)+\sum u_{i+1 t} \frac{\partial h}{\partial u_{i}}+\sum \vartheta_{i+1 t} \frac{\partial h}{\partial \vartheta_{i}}=h f_{u}+k f_{\vartheta} \tag{9}\\
& \sum u_{i+1} \Lambda\left(\frac{\partial k}{\partial u_{i}}\right)+\sum \vartheta_{i+1} \Lambda\left(\frac{\partial k}{\partial \vartheta_{i}}\right)+\sum u_{i+1 t} \frac{\partial k}{\partial u_{i}}+\sum \vartheta_{i+1 t} \frac{\partial k}{\partial \vartheta_{i}}=h g_{u}+k g_{\vartheta} \tag{10}
\end{align*}
$$

where Λ is the following operator:

$$
\begin{equation*}
\Lambda=\sum u_{i t} \frac{\partial}{\partial u_{i}}+\sum \vartheta_{i t} \frac{\partial}{\partial \vartheta_{i}} . \tag{11}
\end{equation*}
$$

Equating coefficients of u_{5} and ϑ_{5}, it is seen that h and k are independent of u_{4} and ϑ_{4} if the following conditions are satisfied:

$$
a_{2}=b_{1}=0 \quad a_{1}=b_{2}
$$

Separating again the coefficients of u_{4} and ϑ_{4}, we observe

$$
\begin{align*}
& h=u_{3} \xi_{1}+\vartheta_{3} \xi_{2} \tag{12}\\
& k=u_{3} \theta_{1}+\vartheta_{3} \theta_{2}
\end{align*}
$$

with ξ_{1}, ξ_{2} satisfying

$$
\begin{align*}
& \Lambda \xi_{1}+5 a_{1} u_{1} f_{u u}+5 a_{1} \vartheta_{1} f_{u \vartheta}=0 \\
& \Lambda \xi_{2}+5 a_{1} \vartheta_{1} f_{\vartheta \vartheta}+5 a_{1} u_{1} f_{u \vartheta}=0 \tag{13}\\
& \Lambda \theta_{1}+5 a_{1} u_{1} g_{u u}+5 a_{1} \vartheta_{1} g_{u \vartheta}=0 \\
& \Lambda \vartheta_{2}+5 a_{1} \vartheta_{1} g_{\vartheta \vartheta}+5 a_{1} u_{1} g_{u \vartheta}=0
\end{align*}
$$

where the operator Λ reduces to

$$
\begin{equation*}
\Lambda=u_{2 t} \frac{\partial}{\partial u_{2}}+\vartheta_{2 t} \frac{\partial}{\partial \vartheta_{2}}+u_{1 t} \frac{\partial}{\partial u_{1}}+\vartheta_{1 t} \frac{\partial}{\partial \vartheta_{1}} . \tag{14}
\end{equation*}
$$

Solving these sets of equations we obtain that $\xi_{i}, \theta_{i}(i=1,2)$ possess the quadratic structure

$$
\begin{align*}
& \xi_{1}=\alpha u_{2}+\beta \vartheta_{2}+\sigma_{1} u_{1}^{2}+\sigma_{2} \vartheta_{1}^{2}+\sigma_{3} u_{1} \vartheta_{1} \\
& \xi_{2}=\alpha^{\prime} u_{2}+\beta^{\prime} \vartheta_{2}+\sigma_{1}^{\prime} u_{1}^{2}+\sigma_{2}^{\prime} \vartheta_{1}^{2}+\sigma_{3}^{\prime} u_{1} \vartheta_{1} \\
& \theta_{1}=\gamma u_{2}+\delta \vartheta_{2}+\rho_{1} u_{1}^{2}+\rho_{2} \vartheta_{1}^{2}+\rho_{3} u_{1} \vartheta_{1} \tag{15}\\
& \theta_{2}=\gamma^{\prime} u_{2}+\delta^{\prime} \vartheta_{2}+\rho_{1}^{\prime} u_{1}^{2}+\rho_{2}^{\prime} \vartheta_{1}^{2}+\rho_{3}^{\prime} u_{1} \vartheta_{1} .
\end{align*}
$$

Simultaneously it is necessary that the functions f and g satisfy

$$
\begin{align*}
& \alpha f_{u}+\beta g_{u}+2 \sigma_{1} f+5 a_{1} f_{u u}=0 \\
& \alpha f_{\vartheta}+\beta g_{\vartheta}+2 \sigma_{2} g+5 a_{1} f_{u \vartheta}=0 \tag{16}
\end{align*}
$$

and similar equations from other sets. The consistency of these yield

$$
\begin{align*}
& \sigma_{1} \beta^{\prime}-\sigma_{1}^{\prime} \beta=\rho_{1} \gamma^{\prime}-\rho_{1}^{\prime} \gamma \\
& \sigma_{2} \beta^{\prime}-\sigma_{2}^{\prime} \beta=\rho_{2} \gamma^{\prime}-\rho_{2}^{\prime} \gamma . \tag{17}
\end{align*}
$$

So for coupled Klein-Gordon-like non-linear systems, when the functions f and g satisfy equations of the form (16), the symmetry generators have the form

$$
\begin{align*}
\eta_{1}=a_{1} u_{5}+u_{3}[& \left.\alpha u_{2}+\beta \vartheta_{2}+\sigma_{1} u_{1}^{2}+\sigma_{2} \vartheta_{1}^{2}\right] \\
& +\vartheta_{3}\left[\alpha^{\prime} u_{2}+\beta^{\prime} \vartheta_{2}+\sigma_{1}^{\prime} u_{1}^{2}+\sigma_{2}^{\prime} \vartheta_{1}^{2}\right]+q\left(u_{1} \vartheta_{1} u_{2} \vartheta_{2}\right) \\
\eta_{2}=b_{2} \vartheta_{5}+u_{3}[& \left.\gamma u_{2}+\delta \vartheta_{2}+\rho_{1} u_{1}^{2}+\rho_{2} \vartheta_{1}^{2}\right] \tag{18}\\
& +\vartheta_{3}\left[\gamma^{\prime} u_{2}+\delta^{\prime} \vartheta_{2}+\rho_{1}^{\prime} u_{1}^{2}+\rho_{2}^{1} \vartheta_{1}^{2}\right]+p\left(u_{1} \vartheta_{1} u_{2} \vartheta_{2}\right)
\end{align*}
$$

Substituting these forms of η_{1} and η_{2} and equating the coefficients of u_{3}, ϑ_{3}, the equations for q and p are obtained; in the form
$\Lambda \frac{\partial p}{\partial u_{2}}=$ a polynomial linear in $\left(u_{2}, \vartheta_{2}\right)$ and quadratic in $\left(u_{1}, \vartheta_{1}\right)$
$\Lambda \frac{\partial p}{\partial \vartheta_{2}}=$ a polynomial of the same structure as above.
We have not written the explicit structure of the right-hand sides of equations (19a) and (19b) as they are too elaborate and cumbersome, but the structure noted is good enough to suggest the form for p and q.

Actually we have set

$$
\begin{align*}
& q=u_{2}^{2} q_{1}\left(u_{1}, \vartheta_{1}\right)+\vartheta_{2}^{2} q_{2}\left(u_{1}, \vartheta_{1}\right)+q^{\prime}\left(u_{1}, \vartheta_{1}\right) \\
& p=u_{2}^{2} p_{1}\left(u_{1}, \vartheta_{1}\right)+\vartheta_{2}^{2} p_{2}\left(u_{1}, \vartheta_{1}\right)+p^{\prime}\left(u_{1}, \vartheta_{1}\right) \tag{20}
\end{align*}
$$

which leads to
$2 f \frac{\partial q_{1}}{\partial u_{1}}+2 g \frac{\partial q_{1}}{\partial \vartheta_{1}}+2 \sigma_{1} f+2 \alpha f_{u}+10 a_{1} f_{u u}-\gamma f_{\vartheta}+\left(\beta+2 \alpha^{\prime}\right) g_{u}=0$
$2 \sigma_{1}^{\prime} f+\beta f_{u}+10 a_{1} f_{u \vartheta}+\left(\alpha-\gamma^{\prime}\right) f_{\vartheta}+2 \beta^{\prime} g_{u}+\alpha^{\prime} g_{\vartheta}=0$
$2 f \frac{\partial q_{2}}{\partial u_{1}}+2 g \frac{\partial q_{2}}{\partial \vartheta_{1}}+\left(2 \beta+\alpha^{\prime}-\delta^{\prime}\right) f_{\vartheta}+10 a_{1} f_{\vartheta \vartheta}-\beta^{\prime} f_{u}+3 \beta^{\prime} g_{\vartheta}+2 \sigma_{2}^{\prime} g=0$
and also
$2 f \frac{\partial p_{1}}{\partial u_{1}}+2 g \frac{\partial p_{1}}{\partial \vartheta_{1}}+\left(2 \tau^{\prime}+\delta-\alpha\right) g_{u}+10 b_{2} g_{u u}-\gamma g_{\vartheta}+3 \gamma f_{u}+2 p_{1} f=0$
$2 p_{2} g+\gamma^{\prime} g_{\vartheta}+10 b_{2} g_{u \vartheta}+\left(\delta^{\prime}-\beta\right) g_{u}+2 \gamma f_{\vartheta}+\delta f_{u}=0$
$2 p_{1}^{\prime} f+\gamma f_{\vartheta}+10 b_{2} g_{u \vartheta}+\left(2 \delta^{\prime}-\alpha^{\prime}\right) g_{u}+\left(\delta+\gamma^{\prime}\right) f_{u}=0$
$2 f \frac{\partial p_{2}}{\partial u_{1}}+2 g \frac{\partial p_{2}}{\partial \vartheta_{1}}+2 p_{2}^{\prime} g+2 \delta^{\prime} g_{\vartheta}+10 b_{2} g_{\vartheta \vartheta}-\beta^{\prime} g_{u}+\left(2 \delta+\gamma^{\prime}\right) f_{\vartheta}=0$.
It is interesting to observe that in the set of equations (21) there are two equations for the functions (q_{1}, q_{2}) occurring in the structure of the symmetries and two other coupled equations for the functions (f, g) giving the form of the non-linear equations. Similarly (p_{1}, p_{2}) are determined by equations ($22 a$) and ($22 d$), the other two equations of the set (22) again giving information for f and g. Now these equations suggest that

$$
\begin{align*}
& q_{1}=A_{1}(u, \vartheta) u_{1}+B_{1}(u, \vartheta) \vartheta_{1} \\
& q_{2}=A_{1}^{\prime}(u, \vartheta) u_{1}+B_{1}^{\prime}(u, \vartheta) \vartheta_{1} \\
& p_{1}=A_{2}(u, \vartheta) u_{1}+B_{2}(u, \vartheta) \vartheta_{1} \tag{23}\\
& p_{2}=A_{2}^{\prime}(u, \vartheta) u_{1}+B_{2}^{\prime}(u, \vartheta) \vartheta_{1}
\end{align*}
$$

A possible simplified solution is given as $B_{1}=B_{2}=0, A_{1}=\sigma_{1}, A_{2}^{\prime}=0$, etc. Finally, equating coefficients of u_{2}, ϑ_{2} and their various powers we obtain equations for p^{\prime} and
q^{\prime} written as

$$
\frac{\partial^{2} q^{\prime}}{\partial u_{1}^{2}}=\text { a polynomial of degree } 3 \text { in } u_{1}, \vartheta_{1}
$$

Similarly for p, and variations of q^{\prime} and p^{\prime} with respect to ϑ_{1}. So in general

$$
\begin{equation*}
\boldsymbol{q}^{\prime}=\sum_{i=0}^{S} \varepsilon_{i} u_{1}^{5-i} \boldsymbol{\vartheta}_{1}^{i} \tag{24}
\end{equation*}
$$

so that the explicit structure of the symmetry generators is

$$
\begin{align*}
& \eta_{1}=a_{1} u_{5}+u_{3}\left(\alpha u_{2}+\beta \vartheta_{2}+\sigma_{1} u_{1}^{2}+\sigma_{2} \vartheta_{1}^{2}\right)+v_{3}\left(\alpha^{\prime} u_{2}+\beta^{\prime} \vartheta_{2}+\sigma_{1}^{\prime} u_{1}^{2}+\sigma_{2}^{\prime} \vartheta_{1}^{2}\right) \\
&+u_{2}^{2}\left[\sigma_{1} u_{1}+\beta_{1} \vartheta_{1}\right]+v_{2}^{2}\left[A_{2} u_{1}+B_{2} \vartheta_{1}\right]+\sum_{i=0}^{s} \varepsilon_{i} u_{1}^{5-i} \vartheta_{1}^{i} \tag{25}
\end{align*}
$$

with a similar form for η_{2}. At the same time we observe that the forms of the non-linear equations are determined by equations (21b), (21c), (22b) and (22c). By suitable adjustments of the arbitrary constants involved one can easily visualise that the solution admitted by these can be put in the form

$$
\begin{align*}
& g=\mathrm{e}^{-u} \sinh 3 \vartheta \\
& f=\mathrm{e}^{2 u}-e^{-u} \cosh 3 \vartheta \tag{26}
\end{align*}
$$

It is now interesting to observe that for $\vartheta=0, g=0$ and $f=\mathrm{e}^{2 u}-e^{-u}$; so that the system reduces to the case of a Dodd-Bullough equation. In general, a system of the form (26) can be termed as a generalised Toda lattice equation and none of these possess any symmetry (non-trivial, other than space translation) with terms lower than u_{5}. Another solution for the system (21b), (21c) and (22b), (22c) is seen to be

$$
\begin{align*}
& f=\mathrm{e}^{u}-\mathrm{e}^{-u} \cos \vartheta \\
& g=\mathrm{e}^{-u} \sin \vartheta \tag{27}
\end{align*}
$$

which is the equation of the relativistic string. In the following we give a short discussion of the special case $\vartheta=0$ for (27) to give some idea of the explicit computations involved.

In this case we have

$$
\begin{align*}
& u_{1 t}=f \\
& D_{x} D_{t} \eta=\eta f_{u}=\sum u_{i+1} \Lambda\left(\frac{\partial \eta}{\partial u_{i}}\right)+\sum u_{i+1} t \frac{\partial \eta}{\partial u_{i}} \tag{28}
\end{align*}
$$

with

$$
\eta=a_{1} u_{5}+h\left(u_{4}, \ldots, u_{1}\right) .
$$

Equation (28) yields $\Lambda\left(\partial h / \partial u_{4}\right)=0$ implying independence of h on u_{4}. From the coefficient of \boldsymbol{u}_{4}

$$
\Lambda\left(\frac{\partial h}{\partial u_{3}}\right)+5 a_{1} u_{1} f_{u u}=0
$$

If we set

$$
h=u_{3} g\left(u_{1}, u_{2}\right)
$$

leading to

$$
u_{2 t} \frac{\partial g}{\partial u_{2}}+u_{1} \frac{\partial g}{\partial u_{1}}+5 a_{1} u_{1} f_{u u}=0
$$

with the choice

$$
g=\alpha u_{2}+\beta u_{1}^{2}
$$

we get

$$
5 a_{1} f_{u u}+\alpha f_{u}+2 \beta f=0
$$

A solution for f is

$$
f=\Lambda_{1} \mathrm{e}^{\sigma_{1} u}+\Lambda_{2} \mathrm{e}^{\sigma_{2} u}
$$

with $\sigma_{1} \sigma_{2}$ being the roots of the equation

$$
5 a_{1} \sigma^{2}+\alpha \sigma+2 \beta=0
$$

For $\sigma_{2}=-2 \sigma_{1}$ we get the Dodd-Bullough equation and this leads to $\alpha^{2}=-5 a_{1} \beta$, connecting the constants α and β. Such adjustment of constants can also be performed in the case of the coupled equations (26) and (27) for the reduction of the general equation to a specific case. In this particular case the form of the symmetry generator is found to be

$$
\eta=a_{1} u_{5}+\left(\alpha u_{2}+\beta u_{1}^{2}\right) u_{3}+\sigma u_{2}^{2} u_{1}+\delta u_{1}^{5} .
$$

In our discussions above we have used the machinery of Lie-Backlund vector fields to analyse a class of coupled Klein-Gordon equations, possessing no trivial generators starting with u_{5}. The relativistic string equation, generalised Toda lattice and DoddBullough equation are well known members of this class. In each case the form of the symmetry generators are explicitly determined except for arbitrary constants. At this point we can mention that equations (26) and (27) were first considered by Fordy and Gibbons [4].

One of the authors (SS) is grateful to the Government of India (DST) for support through a Thrust Area Project.

References

[1] Bruhat Y C and Morettee C D 1977 Analysis, Geometry and Physics (New York: Academic)
[2] Steeb W H 1984 J. Math. Phys. 25237
Bullough R K and Caudrey P J (ed) 1980 Solitons-Current Topics In Physics (Berlin: Springer)
[4] Fordy A P and Gibbons J 1980 Commun. Math. Phys. 7721

